Introduction au Compressed sensing. Null Space Property et Restricted Isometry property
نویسنده
چکیده
On a vu qu’on pouvait réécrire (BP) comme un problème de programmation linéaire et que donc on pouvait implémenter cette procédure de manière efficace même en grandes dimensions N . D’un point de vue théorique, on a montré que si une matrice de mesure A ∈ Rm×N permettait la reconstruction de n’importe quel signal de Σs par Basis Pursuit alors nécessairement m & s log(eN/s), càd on doit avoir au moins s log(eN/s) mesures linéaires pour résoudre le problème du Compressed Sensing par BP sur Σs. Dans ce chapitre, on va introduire des conditions sur la matriceA qui assurent la reconstruction exacte par BP de tous les vecteurs de Σs. La propriété qu’on cherche à obtenir est rappelée ici. Définition 1.2. Soit A : RN → Rm une matrice telle que m ≤ N et s un entier plus petit que N . On dit que A vérifie la propriété de reconstruction exacte d’ordre s quand pour tout vecteur s-sparse x, on a argmin t∈RN ( ‖t‖1 : At = Ax ) = {x}.
منابع مشابه
Phaseless compressive sensing using partial support information
We study the recovery conditions of weighted `1 minimization for real signal reconstruction from phaseless compressed sensing measurements when partial support information is available. A Strong Restricted Isometry Property (SRIP) condition is provided to ensure the stable recovery. Moreover, we present the weighted null space property as the sufficient and necessary condition for the success o...
متن کاملThe gap between the null space property and the restricted isomety property
The null space property (NSP) and the restricted isometry property (RIP) are two properties which have received considerable attention in the compressed sensing literature. As the name suggests, NSP is a property that depends solely on the null space of the measurement procedure and as such, any two matrices which have the same null space will have NSP if either one of them does. On the other h...
متن کاملA Compressed Introduction to Compressed Sensing
We attempt to convey a sense of compressed sensing. Specifically, we discuss how `1 minimization and the restricted isometry property for matrices can be used for sparse recovery of underdetermined linear systems even in the presence of noise.
متن کاملPerturbations of Measurement Matrices and Dictionaries in Compressed Sensing
The compressed sensing problem for redundant dictionaries aims to use a small number of linear measurements to represent signals that are sparse with respect to a general dictionary. Under an appropriate restricted isometry property for a dictionary, reconstruction methods based on ` minimization are known to provide an effective signal recovery tool in this setting. This note explores conditio...
متن کاملGeneralized Null Space and Restricted Isometry Properties
We propose a theoretical study of the conditions guaranteeing that a decoder will obtain an optimal signal recovery from an underdetermined set of linear measurements. This special type of performance guarantee is termed instance optimality and is typically related with certain properties of the dimensionality-reducing matrix M. Our work extends traditional results in sparse recovery, where ins...
متن کامل